

Product Specification Sheet

Model: MS3104

MS3100

Terminal Block Type High-Level Signal Conditioner (Isolator) with Isolated Dual Output

DESCRIPTION

The MS3104 is a terminal block type high-level signal conditioner (isolator) that converts DC current or voltage signals into commonly used DC signals and provides an isolated dual output.

ORDERING CODE

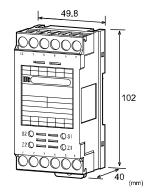
URDERIN	G CODE
Model —	S31 ₀₄ -
Q : 12V DC	Hz) 0V DC
A: 4 to 20mA DC	3: 0 to 1V DC 4: 0 to 10V DC 5: 0 to 5V DC 6: 1 to 5V DC 4W: ±10V DC 5W: ±5V DC 0: Other DC voltage signals
*1: Shunt resistor 50\Omega Output 1 A: 4 to 20mA DC D: 0 to 20mA DC Z: Other DC current signals	1: 0 to 10mV DC 2: 0 to 100mV DC 3: 0 to 100mV DC 4: 0 to 10V DC 5: 0 to 5V DC 6: 1 to 5V DC 3W: ±1V DC 4W: ±10V DC 5W: ±5V DC 0: Other DC voltage signals

Output 2

The codes are the same as for Output 1.

- Note 1: When a voltage output is selected for Output 1, a current output cannot be selected for Output 2.
- Note 2: When the code A (4 to 20mA) is selected for both of the two outputs, the output load will be 550Ω maximum for Output 1 and 350Ω maximum for Output 2.

Options


No code: None

/K: Fast response (0 to 90% response time: 10ms max.)

/H: Polyurethane conformal coating

/X: Others (Special order)

* For non-standard options, ask MTT for availability.

ORDERING INFORMATION

To place an order, please use the ordering code format as shown on the left.

(e.g.) MS3104-A-AA6

Other Ordering Examples:

For an input code of "Z": MS3104-A-ZAA (Input: 8 to

20mA)

For an output code of "0": MS3104-A-A60 (Output: 2 to 5V) For an option code of "X": MS3104-A-66/X (0-90% response time: 5ms max.)

Note: If you wish to include multiple options in your order,

specify the option codes in series (e.g. /KX).

SPECIFICATIONS

●POWER SECT	TION	
Power	100 to 240V AC:	85 to 264V AC (47
Requirements	to 63Hz)	
	24V DC: 24V DC	C±10%
	110V DC: 90 to 1	21V DC
	12V DC: 12V DC	C±20%
Power Sensitivity	Better than ±0.19	6 of span for each
	power supply ran	ge.
Power Line Fuse	160mA fuse	
	315mA fuse (for 12V DC power)	
Maximum Power	100-240V AC	Approx. 6.5VA
Consumption	24V DC	Approx. 1.6W
	110V DC	Approx. 2.5W
	12V DC	Approx. 1.3W

OINPUT SECTION

Input Resistance		
Voltage Input (DC)	With or without power: $1M\Omega$ min.	
Current Input (DC)	4 to 20mA (std.)	250Ω
	2 to 10mA	250Ω
	1 to 5 mA	100Ω
	0 to 20mA	250Ω
	10 to 50mA	10Ω
Allowable Input Voltage		
Voltage Input Model	30V DC max., cont	inuous. (Standard
	for a span up to 10V	<i>V</i>)
Current Input Model	40mA DC max., co	ntinuous.
	(Standard for 4 to 2	0mA)

Ranges Available		
	Current Signal	Voltage Signal
Input Range (DC)	-100 to 100mA	-300 to 300V
Input Span (DC)	100μA*1 to 200mA	200mV*2 to 600V
Input Bias	-100 to 100%	-100 to 100%
Note: For any input r	ange including negat	ive input signals,
the input chanc	for current and volta	ge signals range

the input spans for current and voltage signals range from (*1)200µA to 200mA and (*2)400mV to 600V, respectively.

Input Spec. Ex.1: For 3 to 8V input, the input span is 5V and the bias +60%.

Input Spec. Ex. 2: For -5 to 0V input, the input span is 5V and the bias -100%.

OUTPUT SECTION Allowable Output Load

Voltage Output (DC)	1V span and up 10mV	2mA max. 10kΩ min.
Current Output (DC)	100mV 4-20mA single outpu 4-20mA dual output	100kΩ min. t 750Ω max. Output 1: 550Ω max.
		Output 2: 350Ω max.
Zero Adjustment	Approx. ±5% of spar	
•	(Adjustable by the fretrimmer.)	ont-accessible
Span Adjustment	Approx. ±5% of span. (Adjustable by the front-accessible trimmer.)	
Ranges Available		
	Current Signal	Voltage Signal
Output Range (DC)	0 to 20mA	-10 to 10V
Output Span (DC)	4 to 20mA	10mV to 20V

^{*} For current output signals, the accuracy of any current output smaller than 0.1mA is not guaranteed.

Output Spec. Ex.1: For 4 to 20mA output, the output span is 16mA and the bias +25%.

0 to 100%

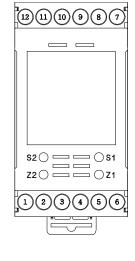
-100 to 100%

Output Spec. Ex. 2: For -1 to 4V output, the output span is 5V and the bias -20%.

PERFORMANCE

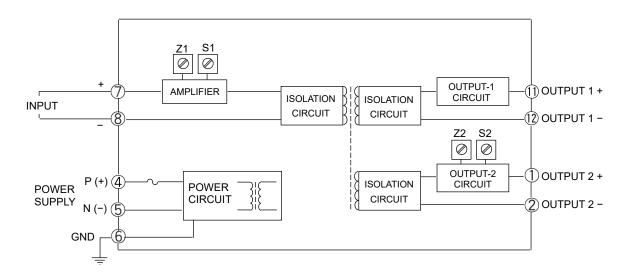
Output Bias

PERFORMAN	CE
Accuracy Rating	Better than $\pm 0.1\%$ of span (at 25°C \pm 5°C).
Temperature	Better than ±0.2% of span per 10°C
Effect	change in ambient.
Response Time	85ms max. (0 to 90%) with a step
	input at 100%.
CMRR	100dB min. (500V AC, 50/60Hz)
Isolation	4-way isolation between input, output
	1, output 2, and power.
Insulation	100MΩ min. (@ 500 V DC) between
Resistance	input, output 1, output 2, power, and
	ground.
Dielectric	Input / [Output 1, Output 2] / [Power,
Strength	Ground]: 2000V AC for 1 minute
	(Cutoff current: 0.5mA)
	Power / Ground: 2000V AC for 1
	minute (Cutoff current: 5mA)
	Output 1 / Output 2: 500V AC for 1
	minute (Cutoff current: 0.5mA)
Surge Withstand	Tested as per ANSI/IEEE
Capability	C37.90.1-1989.


Operating	Ambient temperature: -5 to 55°C
Environment	Humidity: 5 to 90% RH
	(non-condensing)
Storage	-10 to 60°C
Temperature	
●PHYSICAL	
Installation	DIN rail mounting
Wiring	M3.5 screw terminal connection
	(with drop-proof screws)
Screwing Torque	0.8 to 1.0 [Nm] * Recommended
External	$W49.8 \times H102.0 \times D40.0 \text{ mm}$
Dimensions	(including DIN rail)
Weight	140g max.
● MATERIAL	
Housing	ABS resin (UL 94V-0)
Screw Terminal	Nickel-plated steel
Printed Circuit	Glass fabric, epoxy resin
Board	(FR-4: UL 94V-0)

OSTANDARDS CONFORMITY

	0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
EC Directive	EMC Directive (2014/30/EU)
Conformity	EN61326-1:2013
	Low Voltage Directive (2014/35/EU)
	IEC61010-1
	EN61010-1:2010/A1:2019
	Installation Category II
	Pollution Degree 2
	Maximum operating voltage 300V
	Reinforced insulation between
	[input/output/GND] and power.


Note: The 12V DC version is not subject to CE approval.

TERMINAL ASSIGNMENTS

1	+ OUTPUT 2
2	- OUTPUT 2
3	N.C.
4	P (+) POWER
(5)	N (-)
6	GND
7	+ INPUT
8	- INPUT
9	N.C.
0	
10	N.C.
\sim	N.C. + OUTPUT 1
10	

BLOCK DIAGRAM

