

Product Specification SheetModel: MS3737LCSlim Plug-In Distributor with Dual Output(Non-Isolation between Input and Output)

DESCRIPTION

The MS3737LC is a slim plug-in distributor that powers a two-wire transmitter, converts its 4 to 20mA signals into commonly used DC signals, and provides a dual output. This model has no isolation between the input and output, providing a low-cost design. (The unit does not include a transmitter power ON/OFF switch.)

ORDERING CODE

	MS3737LC - 🗆	
Model		

Power Supply

A: 100 to 240V AC (50 to 60Hz) **P**: 100 to 240V DC

Input

4 to 20mA DC from 2-wire transmitters

Output 1

1 to 5V DC

Output 2

4 to 20mA DC

Options

No code: None /**H**: Polyurethane conformal coating

ORDERING INFORMATION

To place an order, please use the ordering code format as shown above.

(e.g.) MS3737LC-A

29 86 125 (mm)

SPECIFICATIONS

POWER SECTI	ON
Power	100 to 240V AC: 85 to 264V AC
Requirements	(47 to 63Hz)
	100 to 240V DC: 85 to 264V DC
Power Sensitivity	Better than $\pm 0.1\%$ of span for each
	power supply range.
Power Line Fuse	160mA fuse is installed (standard).
Power Consumption	
Power	100-240V AC 100-240V DC
	3.5VA max 4.8W max
●INPUT SECTIO	N
Input Signal	4 to 20mA DC from 2-wire
	transmitters
Input Resistance	250Ω
Transmitter Power	Output voltage:
Supply	25V, typical. with 0% input
	18V, typical. with 100% input
	(Output 2: short)
	Maximum current: 25mA, typical.
Limit Current for	26mA (typical)
Short-Circuit	
Protection	
Permissible	Continuous.
Short-Circuit	
Duration	
Note: If the transmitte	r power supply is used for sensor
excitation, the se	ensor should be connected between the
terminals INPU	I (+) and OUTPUT-2 (-), while the
OUTPUT-2 term	ninals (+) and (-) should be kept open.
OUTPUT SECT	ION
Output Signal	Output 1: 1 to 5V DC
	Output 2: 4 to 20mA DC

e alle all e gried.	0
-	Output 2: 4 to 20mA DC
Allowable Load	Output 1: 250kΩ min.
Resistance	Output 2: 10Ω max.
	(Up to 260Ω is allowable if the plus
	and minus terminals of OUTPUT-1
	are short connected.)

PERFORMANCE

Accuracy Rating	Better than $\pm 0.1\%$ (Accuracy of the
	shunt resistor)
Temperature	Better than ±0.03% of span per 10°C
Effect	change in ambient. (Temperature
	coefficient of the shunt resistor)
Isolation	Isolation between [Input, Output 1,
	Output 2] and power.
Insulation	100MΩ min. (@ 500V DC) between
Resistance	[Input, Output 1, Output 2], power,
	and ground.
Dielectric	[Input, Output 1, Output 2] / [Power,
Strength	Ground]: 2000V AC for 1 minute
-	(Cutoff current: 5.0mA)
Surge Withstand	Tested as per ANSI/IEEE
Capability	C37.90.1-1989.
Operating	Ambient temperature: -5 to 55°C
Environment	Humidity: 5 to 90% RH
	(non-condensing)
Storage	-10 to 60°C
Temperature	
● PHYSICAL	
Installation	Wall/DIN rail mounting
Wiring	M3.5 screw terminal connection
č	(with a power terminal block cover &
	drop-proof screws)
Screwing Torque	0.8 to 1.0 [Nm] * Recommended
External	$W29 \times H86 \times D125 \text{ mm}$
Dimensions	(including the mounting screw and
	socket)
Weight	Main unit: 110g max.
5	Socket: 80g max.

MATERIAL	
Housing	ABS resin (UL 94V-0)
Terminal Block	PBT resin (UL 94V-0)
Terminal Block	PC resin (UL 94V-2)
Cover	
DIN Rail Stopper	PP resin (UL 94HB)
Screw Terminal	Nickel-plated steel
Contacts Material	Brass with 0.2µm gold plating
and Finish	
Printed Circuit	Glass fabric, epoxy resin
Board	(FR-4: UL 94V-0)

TERMINAL ASSIGNMENTS

\square
876
±45
$\overline{000}$

\bigcirc	P(+)
\bigcirc	
-ļı	GND
4	+ OUTPUT 1
5	- OUTPUT 1
6	N.C.
\bigcirc	+ OUTPUT 2
8	- OUTPUT 2
9	+ INPUT
10	– INPUT
(1)	N.C.

BLOCK DIAGRAM

Note: If the OUTPUT-1 is only used for distributor applications, the OUTPUT-2 terminals #7 and #8 should be short connected. If these terminals are open, the OUTPUT-1 gives no output.