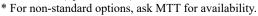

Product Specification Sheet Model: MS3767


MS3700

Slim Plug-In Temperature/Pressure Compensator with Isolated Single Output

DESCRIPTION

The MS3767 is a slim, plug-in temperature/pressure compensator that compensates for variations in temperature, pressure, or differential pressure for accurate flow rate calculation and provides an isolated single output.

ORDERING INFORMATION

To place an order, please use the ordering code format as shown on the left, and also our Specification Order Form.

(e.g.) MS3767A-A-66 (Specification Order Form) * For details, refer to page 4.

Other Ordering Examples: For an input code of "Z": MS3767A-A-ZA (Input: 8 to 20mA) For an output code of "0": MS3767A-A-A0 (Output:2 to 5V)

SPECIFICATIONS

POWER SECT	ION				
Power	100 to 240	VAC: 85 to	264V AC (47		
Requirements	to 63Hz)				
·	24V DC: 2	24V DC: 24V DC±10%			
	100 to 240	V DC: 85 to	264V DC		
Power Sensitivity	Better than	n ±0.1% of sp	oan for each		
	power sup	ply range.			
Power Line Fuse	160mA fu	se is installed	l (standard).		
Power Consumptio	n				
Power 10	0-240VAC	24V DC	100-240V DC		
5	.5VA max	1.6W max	6.0W max		
	ON				
Input Resistance					
Voltage Input (DC)	With or w	ithout power:	$1M\Omega$ min.		
Current Input (DC)	4 to 20mA	(std.) 25	0Ω		
	2 to 10mA	. 25	0Ω		
	1 to 5mA	10	0Ω		
	0 to 20mA	. 25	0Ω		
	10 to 50m	A 10	Ω		
Allowable Input Vol	tage				
Voltage Input Model					
	for a span	up to 10V)			
Current Input Model	40mA DC	max., contin	uous		
	(Standard	for 4 to 20m	A)		
Input Range	0 to 120%				
	Note: Any	input signal	under 0% is		
	assumed to be 0%, while any				
	input signal over 120% is				
	assu	med to be 12	0%.		

Ranges Available							
	Current Signal	Voltage Signal					
Input Range (DC)	-100 to 100mA	-300 to 300V					
Input Span (DC)	100µA*1 to 200mA	200mV*2 to 600V					
Input Bias	-100 to 100%	-100 to 100%					
Note: For any input range including negative input signals,							
the input spans for current and voltage signals range							
from ^(*1) 200µA to 200mA and ^(*2) 400mV to 600V,							
respectively.							
Input Spec. Ex. 1: For 3 to 8V input, the input span is 5V and							
the	e bias +60%.						
Input Spec Ex 2. Fo	r -5 to 0V input the i	input span is 5V					

Input Spec. Ex. 2: For -5 to 0V input, the input span is 5V and the bias -100%.

OUTPUT SECTION

ad							
Allowable Output Load Voltage Output (DC) 1V span and up 2mA max.							
	750Ω max.						
(Adjustable by the f	ront-accessible						
trimmer.)							
Approx. ±5% of spa							
(Adjustable by the f	ront-accessible						
trimmer.)							
$\pm 0.5\%$ of span (set v	value)						
Better than -0.4% of	f span (hysteresis)						
Better than $\pm 0.5\%$ of span.							
Current Signal	Voltage Signal						
0 to 20mA	-10 to 10V						
4 to 20mA	10mV to 20V						
0 to 100% -100 to 100%							
Output Bias0 to 100%-100 to 100%Note: For current output signals, the accuracy of any current							
output smaller than 0.1mA is not guaranteed.							
Output Spec Ex. 1: For 4 to 20mA output, the output span is							
16 mA and the bias $+25%$.							
Output Spec Ex. 2: For -1 to 4V output, the output span is							
5V and the bias $-20%$.							
	1V span and up 10mV 100mV 4 to 20mA Approx. \pm 5% of spa (Adjustable by the f trimmer.) Approx. \pm 5% of span (Adjustable by the f trimmer.) \pm 0.5% of span (set v Better than -0.4% of Better than \pm 0.5% of Better than \pm 0.5% of Current Signal 0 to 20mA 4 to 20mA 0 to 100% put signals, the accura- han 0.1mA is not gua r 4 to 20mA output, that r 4 to 20mA o						

PERFORMANCE

Equations

Temperature/Pressure Compensation:

$$X_{0} = \sqrt{\frac{T_{B}+273.15}{((T_{F}-T_{Z})\cdot X_{2}+T_{Z})+273.15}} \cdot \frac{((P_{F}-P_{Z})\cdot X_{3}+P_{Z})+101.32}{P_{B}+101.32} \cdot X_{1}$$

Temperature/Pressure Compensation (without square-root extraction of IN1):

$$X_{0} = \frac{T_{B} + 273.15}{((T_{F} - T_{Z}) \cdot X_{2} + T_{Z}) + 273.15} \cdot \frac{((P_{F} - P_{Z}) \cdot X_{3} + P_{Z}) + 101.32}{P_{B} + 101.32} \cdot X_{1}$$

Temperature/Pressure Compensation (without square-root extraction):

$$X_{0} = \frac{T_{B} + 273.15}{((T_{F} - T_{Z}) \cdot X_{2} + T_{Z}) + 273.15} \cdot \frac{((P_{F} - P_{Z}) \cdot X_{3} + P_{Z}) + 101.32}{P_{B} + 101.32} \cdot X_{1}$$

Temperature Compensation:

$$X_{0} = \sqrt{\frac{T_{B}+273.15}{((T_{F}-T_{Z})\cdot X_{2}+T_{Z})+273.15}} \cdot X_{1}$$

Temperature Compensation (without square-root extraction of IN1):

$$X_{0} = \sqrt{\frac{T_{B} + 273.15}{((T_{F} - T_{2}) \cdot X_{2} + T_{2}) + 273.15}} \cdot X_{1}$$

Temperature Compensation (without square-root extraction): Te+273.15

$$X_0 = \frac{1}{((T_F - T_Z) \cdot X_2 + T_Z) + 273.15} \cdot X_1$$

X₀: Calculated output (%)

X1: Differential pressure input (IN1) (%)

X₂: Temperature input (IN2) (%)

X₃: Pressure input (IN3) (%)

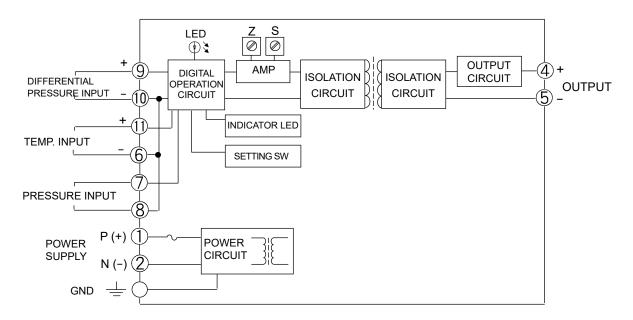
T_B: Reference temperature for compensation (°C)

- T_Z: Temperature input 0% (°C)
- T_F: Temperature input 100% (°C)
- P_B: Reference pressure for compensation (kPa)

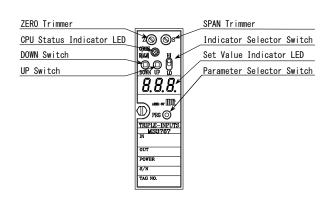
Pz: Pressure input 0% (kPa)

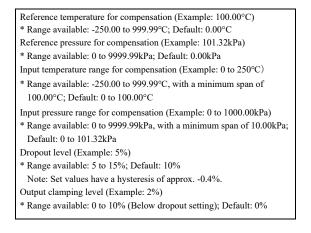
P_F: Pressure input 100% (kPa)

Accuracy Rating	Input accuracy: $\pm 0.1\%$ of span
	Output accuracy: $\pm 0.2\%$ of span
Temperature	Better than $\pm 0.2\%$ of span per 10°C
Effect	change in ambient.
Response Time	1s max. (0 to 90%) with a step input
	at 100%.
CMRR	100dB min. (500V AC, 50/60Hz)
Isolation	3-way isolation between input,
	output, and power.
Insulation	100MΩ min. (@ 500V DC) between
Resistance	input, output, power, and ground.
Dielectric	Input / Output / [Power, Ground]:
Strength	2000V AC for 1 minute (Cutoff
Ū	current: 0.5mA)
	Power / Ground: 2000V AC for 1
	minute (Cutoff current: 5mA)
Surge Withstand	Tested as per ANSI/IEEE
Capability	C37.90.1-1989
Operating	Ambient temperature: -5 to 55°C
Environment	Humidity: 5 to 90% RH
	(non-condensing)
Storage	-10 to 60°C
Temperature	
PHYSICAL	
Installation	Wall/DIN rail mounting
Wiring	M3.5 screw terminal connection
	(with a power terminal block cover &
	drop-proof screws)
Screwing Torque	0.8 to 1.0 [Nm] * Recommended
External	$W29 \times H86 \times D125 mm$
Dimensions	(including the mounting screw and
	socket)
Weight	Main unit: 130g max.
	Socket: 80g max.
MATERIAL	
Housing	ABS resin (UL 94V-0)
Terminal Block	PBT resin (UL 94V-0)
Terminal Block	PC resin (UL 94V-2)
Cover	$1 \in 105 \text{ m} (\text{OL} \text{J} \text{J} $
DIN Rail Stopper	PP resin (UL 94HB)
Screw Terminal	Nickel-plated steel
Contacts Material	Brass with 0.2µm gold plating
and Finish	Drass with 0.2µm gold platting
Printed Circuit	Glass fabric enoxy resin
Printed Circuit Board	Glass fabric, epoxy resin (FR-4: UL 94V-0)


MTT Corporation

Rev. 2.30 Page: 2/5


TERMINAL ASSIGNMENTS


U	1	P (+) POWER
	2	N (-)
	1	GND
99	4	+ OUTPUT
	5	– OUTPUT
• <u> </u>	6	- INPUT 2 (Temp. input)
		+ INPUT 3 (Pressure input)
	8	- INPUT 3 (Pressure input)
	9	+ INPUT 1 (Differential pressure input)
	(10)	 INPUT 1 (Differential pressure input)
_	(11)	+ INPUT 2 (Temp. input)

BLOCK DIAGRAM

FRONT VIEW

MTT Corporation

ADDITIONAL ORDERING INFORMATION

Temperature/Pressure Compensation:

$$X_{0} = \sqrt{\frac{T_{B}+273.15}{((T_{F}-T_{2})\cdot X_{2}+T_{2})+273.15}} \cdot \frac{((P_{F}-P_{2})\cdot X_{3}+P_{2})+101.32}{P_{B}+101.32} \cdot X_{1}$$

Temperature/Pressure Compensation (without square-root extraction of IN1):

$$X_0 = \sqrt{\frac{T_B + 273.15}{((T_F - T_Z) \cdot X_Z + T_Z) + 273.15}} \cdot \frac{((P_F - P_Z) \cdot X_Z + P_Z) + 101.32}{P_B + 101.32}$$

Temperature/Pressure Compensation (without square-root extraction):

$$X_{0} = \frac{T_{B}+273.15}{((T_{F}-T_{2})\cdot X_{2}+T_{2})+273.15} \cdot \frac{((P_{F}-P_{2})\cdot X_{3}+P_{2})+101.32}{P_{B}+101.32} \cdot X_{2}$$

X₀: Calculated output (%) X₁: Differential pressure input (IN1) (%)

- X₂: Temperature input (IN2) (%)
- X₃: Pressure input (IN3) (%)
- T_B: Reference temperature for compensation (°C)
- Tz: Temperature input 0% (°C)
- T_F: Temperature input 100% (°C)
- P_B: Reference pressure for compensation (kPa)
- P_Z: Pressure input 0% (kPa)
- P_F: Pressure input 100% (kPa)

	Item	User Specified	Unit	Example	Range Available	Default
1	Reference temperature for compensation		°C	100.00°C	-250.00 to 999.99°C	0.00°C
2	Reference pressure for compensation		kPa	101.32kPa	0 to 9999.99kPa	0.00kPa
3	Input temperature range for compensation		°C	0 to 250°C	-250.00 to 999.99°C	0 to 100.00°C
4	Input pressure range for compensation		kPa	0 to 1000.00kPa	0 to 9999.99kPa	0 to 101.32kPa
5	Dropout level		%	5%	5 to 15%	10%
6	Output clamping level		%	2%	0 to 10%	0%

Temperature Compensation:

$$X_{0} = \sqrt{\frac{T_{B} + 273.15}{((T_{F} - T_{Z}) \cdot X_{2} + T_{Z}) + 273.15} \cdot X_{1}}$$

Temperature Compensation (without square-root extraction of IN1):

$$X_{0} = \sqrt{\frac{T_{B}+273.15}{((T_{F}-T_{Z})\cdot X_{2}+T_{Z})+273.15}} \cdot X_{1}$$

Temperature Compensation (without square-root extraction):

$$\label{eq:X0} X_0 = \quad \frac{T_B {+} 273.\ 15}{\left(\left(T_F {-} T_Z\right) \cdot X_2 {+} T_Z\right) {+} 273.\ 15} \ \bullet \ X_1$$

X₀: Calculated output (%)

X1: Differential pressure input (IN1) (%)

X₂: Temperature input (IN2) (%)

T_B: Reference temperature for compensation (°C)

- T_Z: Temperature input 0% (°C)
- T_F : Temperature input 100% (°C)

	Item	User Specified	Unit	Example	Range Available	Default
1	Reference temperature for compensation		°C	100.00°C	-250.00 to 999.99°C	0.00°C
2	Input temperature range for compensation		°C	0 to 250°C	-250.00 to 999.99°C	0 to 100.00°C
3	Dropout level		%	5%	5 to 15%	10%
4	Output clamping level		%	2%	0 to 10%	0%

LED STATUS INDICATORS

INDICATOR PATTERN	S
-------------------	---

No.	Event	Set Value Indicator (7-segment LED)	CPU Status Indicator LED	Output	Recovery Operation
1	Power ON or start of constant setting	Blinks 3 times (1 s ON - 0.5 s OFF cycle), then displays an equation code for 1 second.	Green LED turns ON for 1 second, and then red LED turns ON for 0.5 second. This cycle is repeated 3 times.	Normal	_
2	Normal operation	OFF	Green LED is ON.	Normal	-
3	Dropout operation	OFF	Red and green LEDs alternately blink at 1 second intervals.	Clamp value	-
4	Constant setting	Constant	Red LED blinks at 1 second intervals when the constant is positive; Green LED blinks at 1 second intervals when it is negative.	Value before setting	End of setting
5	DAC error	Error code: 1	Red LED is ON.	Typically 0%, but may vary.	None
6	Internal parameter error	Error code: 2	Red LED is ON.	Typically 0%, but may vary.	None
7	Equation parameter error	Error code: 4	Red LED is ON.	Typically 0%, but may vary.	Reconfiguration
8	Temperature constant parameter error	Error code: 8	Red LED is ON.	Typically 0%, but may vary.	Reconfiguration
9	Pressure constant parameter error	Error code: 16	Red LED is ON.	Typically 0%, but may vary.	Reconfiguration
10	Dropout/clamping parameter error	Error code: 32	Red LED is ON.	Typically 0%, but may vary.	Reconfiguration
11	System error	Not defined.	Red LED is ON; Green LED is not defined.	Typically 0%, but may vary.	None

Notes:

No. 1: When the Set Value Indicator is tuned ON, a 3-digit number "888" with dots is displayed. No. 5 - 10: If multiple errors occur, the sum of error code numbers is displayed. No. 11: The red LED may fail to light up.