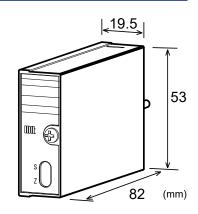


DESCRIPTION

The MS3903 is a chassis-mount millivolt isolator that amplifies millivolt input signals from sensors and converts them into mutually isolated dual channel DC output signals.

- ∇ A multi-slot chassis provides ease of maintenance and high-density mounting.
- ∇ Input, output 1, output 2, and power circuits are all isolated from each other.
- ∇ Equipped with a fuse on the DC power line as standard.

ORDERING INFORMATION


Ordering Code

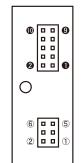
SPECIFICATIONS

POWER SECTION				
Power	ower 24V DC±10%			
Requirement				
Power	r Better than $\pm 0.1\%$ of span per 10%			
Sensitivity	change in supply voltage			
Power Line Fuse	160mA fuse			
Current	45mA max. at 24V DC			
Consumption				

INPUT SECTION

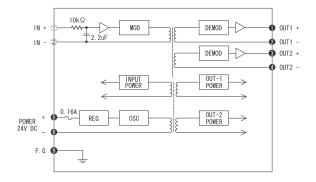
■ 0–10mV DC ······V2			
■ 0–100mV DC ······V3			
$\blacksquare \pm 10 \text{mV DC} \cdots \text{W2}$			
$\blacksquare \pm 100 \text{mV DC} \cdots \text{W3}$			
■ Other DC voltage signal			
······X1 (□-□)			
Specify an input range in parentheses.			
The span must be between 5mV and			
200mV.			
$1M\Omega$ min. with or without power.			
30V DC max., continuous.			
)N			
Output 1 / Output 2 ·····Code			
$\blacksquare 1-5V DC / 1-5V DC \cdots VI$			
■ 0–5V DC / 0–5V DC ······V5			
■ 0–10V DC / 0–10V DC ······V6			
$= \pm 5 \text{V DC} / \pm 5 \text{V DC} \cdots \text{W5}$			
$= \pm 10 \text{V DC} / \pm 10 \text{V DC} \cdots \text{W6}$			
■ 1–5V DC / 4–20mA DC ······C1			
Note: Combinations of two outputs are			
only available as shown above.			

Allowable	Voltage output: 2mA max.			
Output Load	Current output: 300Ω max.			
Zero Adjustment	Approx. $\pm 2\%$ of span.			
	(Adjustable by front-accessible trimmer)			
Span Adjustment	Approx. $\pm 2\%$ of span.			
	(Adjustable by front-accessible trimmer)			
	··· · · · · · · · · · · · · · · · · ·			
ADDITIONAL				
Option [3]	■ Polyurethane conformal coating ···· /H			
Optional	You can optionally specify the following			
Parameter	parameters when ordering. Please ask our			
Changes	Sales representatives for availability in			
C C	advance.			
	<parameter> ······ <how specify="" to=""></how></parameter>			
	Response frequency $\cdot \cdot Fc = \Box \Box \Box Hz$			
	(Up to 200Hz)			
	Response time constant \cdot Tc = $\Box \Box \Box$ s			
	(Up to 2ms @ 90%)			
PERFORMANCE				
Accuracy Rating	Better than $\pm 0.1\%$ of span (at $25^{\circ}C\pm 5^{\circ}C$)			
Temperature	Better than $\pm 0.2\%$ of span per 10°C			
Effect	change in ambient.			
Response Time	160ms max. (0 to 90%) with a step input			
	at 100%.			
CMRR	100dB min. (500V AC, 50/60Hz)			
Isolation	4-way isolation between input, output 1,			
	output 2, and power.			
Insulation	$100M\Omega$ min. (@ 500V DC) between			
Resistance	input, output 1, output 2, and power.			
Dielectric	Input / [Output 1, Output 2, Power]:			
Strength	1500V AC for 1 minute (Cutoff current:			
	0.5mA)			
	Output 1 / Output 2 / Power: 500V AC for			
	1 minute (Cutoff current: 0.5mA)			
Surge Withstand	Tested as per ANSI/IEEE C37.90.1-1989.			
A 1 1111				
Capability				


PHYSICAL

Installation	Mounted in an optional chassis
	(RC3900A-□□AI or RS3900-01TB).
Wiring	Wired to an optional chassis (RC3900A-
	□□AI or RS3900-01TB).
External	W19.5 × H53 × D82 mm
Dimensions	
Weight	70g max.

MATERIAL


Housing	ABS resin
PC Board	Glass fabric, epoxy resin (FR-4: UL 94V-0)

PIN ASSIGNMENTS

PIN	SIGNAL	PIN	SIGNAL
1	+ INPUT	0	+ OUTPUT 1
2	— INPUT	0	— OUTPUT 1
3	N. C.	0	+ OUTPUT 2
4	N. C.	4	— OUTPUT 2
5	N. C.	6	+ POWER DC24V
6	N. C.	6	
$\overline{}$		0	N. C.
$\overline{}$		8	N. C.
$\overline{}$		9	F.G.
$\overline{\ }$		10	N. C.

BLOCK DIAGRAM

