

Product Specification Sheet

Model: MS3906

MS3900

Chassis-Mount Strain Gauge Transmitter with Isolated Dual Output

DESCRIPTION

The MS3906 is a chassis-mount strain gauge transmitter that supplies excitation voltage to strain-gauge type pressure sensors, load cells, and the like and converts their output signals into mutually isolated dual channel DC output signals.

- ∇ A multi-slot chassis provides ease of maintenance and high-density mounting.
- ∇ Input, output 1, output 2, and power circuits are all isolated from each other.
- ∇ Equipped with a fuse on the DC power line as standard.

\$ 53 82 (mm)

ORDERING INFORMATION

Ordering Cod	е			
MS3906-□□		1 🗆 🗆 🗕	.200	
IVID3700 LL				
[1]	[2]	[3]	[4]	

SPECIFICATIONS

POW	/FR	SECT	LION

Power	24V DC±10%
Requirement	
Power	Better than $\pm 0.1\%$ of span per 10%
Sensitivity	change in supply voltage
Power Line Fuse	160mA fuse
Current	70mA max. at 24V DC
Consumption	

INPUT SECTION

INPUT SECTION	
Excitation	■ 5V DC ····· E2
Voltage	■ 10V DC ····· E3
(Specify a code in	\blacksquare Other DC voltages $\cdots \cdots \to EY(\Box\Box\Box)$
the field [1].)	Specify a voltage between 5V and 10V
	in parentheses.
	5V DC at 120Ω bridge resistance
	$10V$ DC at 350Ω bridge resistance
Bridge	Specify a resistance value.
Resistance	
(Specify resistance	
in the field [2].)	
Input	■ 0–10mV DC · · · · · · · V2
(Specify a code in	■ 0–100mV DC ···································
the field [3].)	$\blacksquare \pm 10 \text{mV DC} \cdots W2$
	\blacksquare ±100mV DC · · · · · · W3
	■ Other DC voltage signals $\cdot \cdot X1(\square - \square)$
	Specify a voltage range in parentheses.
	The span must be 5mV or greater.
Input Resistance	$1M\Omega$ min. ($10k\Omega$ min. without power)
Allowable Input	30V DC max., continuous.
Voltage	

OUTPUT SE	ECTION
-----------	--------

Output	Output 1 / Output 2 · · · · · Code	
(Specify a code in	■ 1–5V DC / 1–5V DC ·······V1	
the field [4].)	■ 0-5V DC / 0-5V DC ························V5	
	■ 0–10V DC / 0–10V DC · · · · · · · · V6	
	■ ±5V DC / ±5V DC · · · · · · · · · · · · W5	
	■ ±10V DC / ±10V DC · · · · · · · · · W6	
	■ 1–5V DC / 4–20mA DC · · · · · · C1	
	Note: Combinations of two outputs are	
	only available as shown above.	
Allowable	Voltage output: 2mA max.	
Output Load	Current output: 300Ω max.	
Zero Adjustment	Approx. ±5% of span	
	(Adjustable by front-accessible trimmer)	
Span Adjustment	Approx. ±5% of span	
	(Adjustable by front-accessible trimmer)	

PERFORMANCE

I LINI OINWANDL	
Accuracy Rating	Better than ±0.1% of span (at 25°C±5°C)
Temperature	Better than ±0.2% of span per 10°C
Effect	change in ambient.
Response Time	180ms max. (0 to 90%) with a step input
	at 100%.
CMRR	100dB min. (500V AC, 50/60Hz)
Isolation	4-way isolation between input, output 1,
	output 2, and power.
Insulation	100MΩ min. (@ 500V DC) between
Resistance	input, output 1, output 2, and power.
Dielectric	Input / [Output 1, Output 2, Power]:
Strength	1500V AC for 1 minute (Cutoff current:
	0.5mA)
	Output 1 / Output 2 / Power: 500V AC for
	1 minute (Cutoff current: 0.5mA)
Surge Withstand	Tested as per ANSI/IEEE C37.90.1-1989.
Capability	
Operating	Ambient temperature: 0 to 55°C
Environment	Humidity: 5 to 90% RH (non-condensing)
Storage	−10 to 60°C
Temperature	

PHYSICAL

1 111 0107 LL		
Installation	Mounted in an optional chassis	
	(RC3900A-□□AI or RS3900-01TB).	
Wiring	Wired to an optional chassis	
-	(RC3900A-□□AI or RS3900-01TB).	
External	W19.5 × H53 × D82mm	
Dimensions		
Weight	80g max.	

MATERIAL

Housing	ABS resin
PC Board	Glass fabric, epoxy resin (FR-4: UL 94V-0)
Conformal	HumiSeal® 1A27NSLU (Polyurethane)
Coating	

^{*} HumiSeal® is a registered trademark of Chase Corporation.

ADDITIONAL

Optional	You can optionally specify the following
Parameter	parameters when ordering. Please ask our
Changes	Sales representatives for availability in
	advance.
	<parameter> ······ <how specify="" to=""></how></parameter>
	■ Response frequency $\cdot \cdot \cdot \text{Fc} = \Box \Box \Box \Box \text{Hz}$
	■ Response time constant \cdot Tc = \square \square s

PIN ASSIGNMENTS

PIN	SIGNAL	PIN	SIGNAL
1	+ INPUT	0	+ OUTPUT 1
2	INPUT	2	- OUTPUT 1
3	N. C.	0	+ OUTPUT 2
4	— EX	4	- OUTPUT 2
(5)	+ EX	6	+ POWER DC24V
6	N. C.	6	- POWER 0624V
$\overline{}$		0	N. C.
		8	N. C.
		0	F. G.
$\overline{}$		0	N. C.

BLOCK DIAGRAM

