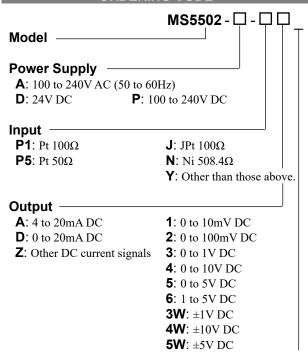


Product Specification Sheet

Model: MS5502


MS5500

Plug-In RTD Temperature Transmitter with Isolated Single Output

DESCRIPTION

The MS5502 is a plug-in RTD temperature transmitter that converts input signals from an RTD into commonly used DC signals and provides an isolated single output.

ORDERING CODE

Note: Upscale burnout protection is standard.

Options

No code: None

/K: Fast response (0 to 90% response time: 10ms max.)

0: Other DC voltage signals

/H: Polyurethane conformal coating

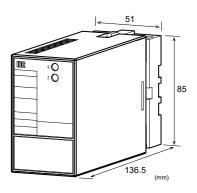
/X: Others (Special order)

ORDERING INFORMATION

To place an order, please use the ordering code format as shown above. Also specify a measuring temperature range*.

(e.g.) MS5502-A-P16/K (0 to 150°C)

* Note that the temperature range should be specified in steps of at least 10 degrees Celsius.


Other Ordering Examples:

For an input code of "Y": MS5502-A-YA (Input: Cu 10Ω at 0° C / 0 to 100° C)

For an output code of "0": MS5502-A-P10 (0 to 150° C / Output: 2 to 5V)

For an option code of "X": MS5502-A-P1A/X (0 to 150° C / Response frequency 50Hz)

Note: If you wish to include multiple options in your order, specify the option codes in series (e.g. /KX).

SPECIFICATIONS

POW	/ED	CEC	TIC	NA.
	/EK	SEL	, I IV.	ЛN

POWER SEC	TION		
Power	100 to 24	10V AC: 85 t	o 264V AC (47
Requirements	to 63Hz)		
	24V DC:	24V DC±10)%
	100 to 24	10V DC: 85 t	to 264V DC
Power Sensitivity	Better the	an ±0.1% of	span for each
	power su	pply range.	
Power Line Fuse	160mA f	use	
Maximum Power	Consumption	า	
Power	100-240V AC	24V DC	100-240V DC
	Approx.	Approx.	Approx.
	5.5VA	1.6W	6.0W

OINPUT SECTION

_	
Excitation Current	Approx. 1mA with Pt for 0 to 100°C
Lead Wire	200Ω max. per wire
Resistance	
Ranges Available	

<Standard specifications> (Temp at 0% input = 0°C)

Pt 100Ω	Specify between 0-50°C and 0-500°C in steps of 50°C (e.g. Pt 100Ω, 0 to 150°C).
JPt 100Ω	Specify between 0-50°C and 0-500°C in steps of 50°C (e.g. JPt 100Ω, 0 to 250°C).
Pt 50Ω	0 to 100°C

<Quasi-standard specifications>

RTD	Temperature Range (°C)	Input Span	Input Bias
Pt 100Ω	-200 to +850	50°C min.	
JPt 100Ω	-200 to +500	50°C min.	Up to 4x the
Pt 50Ω	-200 to +600	100°C min.	input span.
Ni 508.4Ω	-50 to +250	30°C min.	

Input Spec Ex.: For Pt 100Ω (150 to 200° C), the input span is 50°C and the bias 150°C (3x the span).

Note: Any specification out of the temperature range or bias requirement listed above is handled as a special order.

OUTPUT SECTION

0001101010		
Allowable Output Load		
Voltage Output (DC)	1V span and up	2mA max.
	10mV	$10k\Omega$ min.
	100mV	100 k Ω min.
Current Output (DC)	4 to 20mA	750Ω max.

^{*} For non-standard options, ask MTT for availability.

Produc	t
--------	---

Zero Adjustment	Approx. ±5% of sp	oan.
	(Adjustable by the	front-accessible
	trimmer.)	
Span Adjustment	Approx. ±5% of sp	oan.
•	(Adjustable by the	front-accessible
	trimmer.)	
Burnout Protection	Upscale (even if a	ny of the three
	wires, A, B, and B	'is opened)
Ranges Available		
	Current Signal	Voltage Signal
Output Range (DC)	0 to 20mA	-10 to 10V
Output Span (DC)	4 to 20mA	10mV to 20V
Output Bias	0 to 100%	-100 to 100%
* For current output si	gnals, the accuracy	of any current

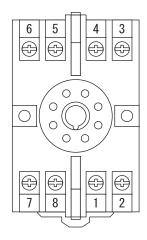
* For current output signals, the accuracy of any current output smaller than 0.1mA is not guaranteed.

Output Spec Ex. 1: For 4 to 20mA output, the output span is 16mA and the bias +25%.

Output Spec Ex. 2: For -1 to 4V output, the output span is 5V and the bias -20%.

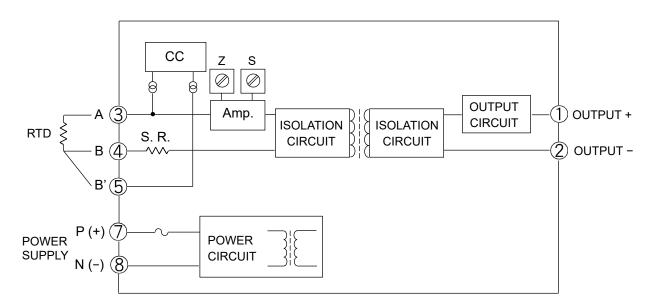
PERFORMANCE

PERFURIMANC	E
Accuracy Rating	Better than $\pm 0.15\%$ of span (at
	25°C±5°C).
Temperature	Better than ±0.2% of span per 10°C
Effect	change in ambient.
Response Time	170ms max. (0 to 90%) with a step
	input at 100%.
CMRR	100dB min. (500V AC, 50/60Hz)
Isolation	3-way isolation between input,
	output, and power.
Insulation	100MΩ min. (@ 500V DC) between
Resistance	input, output, and power.
Dielectric Strength	Input / Output / Power: 2000V AC
	for 1 minute (Cutoff current: 0.5mA)
Surge Withstand	Tested as per ANSI/IEEE
Capability	C37.90.1-1989.
Operating	Ambient temperature: -5 to 55°C
Environment	Humidity: 5 to 90% RH
	(non-condensing)
Storage	-10 to 60°C
Temperature	


PHYSICAL

Installation	Wall/DIN rail mounting
Mounting Direction	Vertical
Screwing Torque	0.78 to 1.18 [Nm] * Recommended
Wiring	M3.5 screw terminal connection
External	W51 × H85 × D136.5 mm
Dimensions	(including the socket)
Weight	Main unit: 200g max.
	Socket: 60g max.

MATERIAL


_	
Housing	ABS resin (UL 94V-0)
Socket	ABS resin (UL 94V-0)
Screw Terminal	Galvanized steel with trivalent
	chromate finish
Printed Circuit	Glass fabric, epoxy resin
Board	(FR-4: UL 94V-0)

TERMINAL ASSIGNMENTS

1	+ OUTPUT
2	- OUTPUT
3	RTD A
4	RTD B
(5)	RTD B'
6	N.C.
7	P (+) POWER
8	N (-)

BLOCK DIAGRAM

