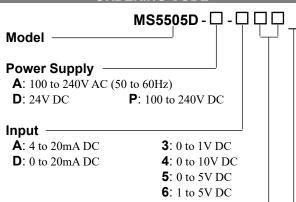


# **Product Specification Sheet**


Plug-In Digital Alarm Setter

#### MS5500

#### **DESCRIPTION**

The MS5505D is a plug-in digital alarm setter that compares the levels of DC current or voltage signals with two set-points (upper and lower limits) and outputs two independent isolated relay contact closure signals.

#### **ORDERING CODE**



#### **Relay Activation Modes for Output 1&2**

Mode of operation for each channel can be selected from the following:

|    | With Power        |                   | Without |
|----|-------------------|-------------------|---------|
|    | Input < Set Value | Input > Set Value | Power   |
| ОН | OFF               | ON                | OFF     |
| OL | ON                | OFF               | OFF     |
| СН | ON                | OFF               | ON      |
| CL | OFF               | ON                | ON      |

Note: The mode of operation cannot be changed by users.

#### Options -

No code: None

**/K**: Fast response (0 to 90% response time: 100ms max.)

/X: Others (Special order)

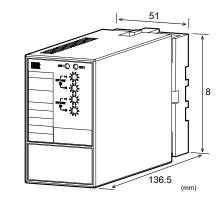
\* For non-standard options, ask MTT for availability.

## ORDERING INFORMATION

To place an order, please use the ordering code format as shown above.

(e.g.) MS5505D-A-6OHOL

\* The factory default trip point for both channels is 50% or equivalent of input span.


Other Ordering Examples:

For an option code of "X": MS5505D-A-6OHOL/X (Response time constant: T = 50ms with 90% setting) For specific trip points\*: MS5505D-A-6OHOL

Trip point for Output 1: 40% Trip point for Output 2: 70%

\* Specify values in % within the range of 0 to 99% of input

Note: If you wish to include multiple options in your order, specify the option codes in series (e.g. /KX).





#### **SPECIFICATIONS**

Model: MS5505D

| <b>POW</b> | FR | SF | CTI          | ON        |
|------------|----|----|--------------|-----------|
|            | -1 |    | $\smile$ 1 1 | $\sim$ 14 |

| 0.0               |             |                                   |              |  |
|-------------------|-------------|-----------------------------------|--------------|--|
| Power             | 100 to 240  | 100 to 240V AC: 85 to 264V AC (47 |              |  |
| Requirement       | to 63Hz)    | to 63Hz)                          |              |  |
|                   | 24V DC: 24  | 4V DC±10%                         | ó            |  |
|                   | 100 to 240° | V DC: 85 to                       | 264V DC      |  |
| Power Sensitivity | Better than | $\pm 0.1\%$ of s <sub>1</sub>     | oan for each |  |
|                   | power supp  | ly range.                         |              |  |
| Power Line Fuse   | 160mA fus   | e                                 |              |  |
| Maximum Power     | Consumption |                                   |              |  |
| Power             | 100-240V AC | 24V DC                            | 100-240V DC  |  |
|                   | Approx.     | Approx.                           | Approx.      |  |

## **•INPUT SECTION**

### Input Resistance

Voltage Input (DC) With power:  $1M\Omega$  min.

6.5VA

Without power:  $10k\Omega$  min.

2.0W

8.4W

Current Input (DC) 4 to 20mA (std.)  $250\Omega$ 

Allowable Input Voltage

Voltage Input Model 30V DC max., continuous.

Current Input Model 40mA DC max., continuous.

#### **OUTPUT SECTION**

| 0000             |                                       |  |
|------------------|---------------------------------------|--|
| Output Signal    | Two independent relay contact         |  |
|                  | closure signals                       |  |
|                  | OH & OL: Form A contacts              |  |
|                  | CH & CL: Form B contacts              |  |
| Trip Points      |                                       |  |
| Setting          | Through the front-accessible rotary   |  |
|                  | switch.                               |  |
| Range            | 0 to 99% of span (in steps of 1%).    |  |
| Accuracy         | $\pm 0.5\%$ of span.                  |  |
| Hysteresis       | $1.0\%$ of span $\pm 0.3\%$           |  |
| Relay Indicator  | OH & OL: The red LED lights up        |  |
|                  | when the relay is ON.                 |  |
|                  | CH & CL: The red LED lights up        |  |
|                  | when the relay is OFF.                |  |
| Relay Activation | OH & OL: OFF                          |  |
| without Power    | CH & CL: ON                           |  |
| Relay Start-up   | The relay gets ready for action about |  |
| Limitation       | 2 seconds after power-up.             |  |

#### PERFORMANCE

| TI LIN ONMAN   | 101                                                         |
|----------------|-------------------------------------------------------------|
| Temperature    | Better than ±0.15% of span per 10°C                         |
| Effect         | change in ambient.                                          |
| Response Time  | 150ms max. (0 to 90%) with a step                           |
|                | input at 100%.                                              |
| Isolation      | 4-way isolation between input, output                       |
|                | 1, output 2, and power.                                     |
| Insulation     | $100 \mathrm{M}\Omega$ min. (@ $500 \mathrm{V}$ DC) between |
| Resistance     | input, output 1, output 2, and power.                       |
| Dielectric     | Input / Output 1 / Output 2 / Power:                        |
| Strength       | 2000V AC for 1 minute (Cutoff                               |
|                | current: 0.5mA)                                             |
| Relay Contacts |                                                             |
| Rated Load     | 2A 125V AC, 2A 30V DC                                       |
| Maximum        | 250V AC 30V DC                                              |

Maximum 250V AC, 30V DC

Allowable Voltage

2A Maximum Allowable

Current

Electrical Life 2A, 250V AC:  $50 \times 10^3$  cycles

(Frequency: 1,800 cycles/h) 2A, 30V DC:  $100 \times 10^3$  cycles (Frequency: 1,800 cycles/h)

Mechanical Life  $5 \times 10^6$  cycles (Frequency: 18,000

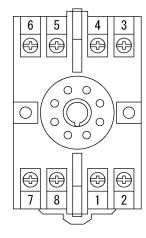
cycles/h)

Surge Withstand Tested as per ANSI/IEEE Capability C37.90.1-1989.

Operating Ambient temperature: -5 to 55°C Environment Humidity: 5 to 90% RH (non-condensing)

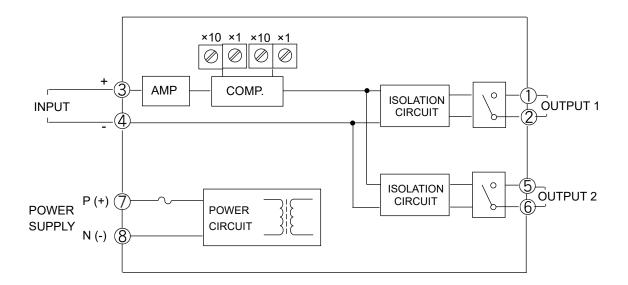
Storage -10 to 60°C Temperature

### PHYSICAL


| Installation    | Wall/DIN rail mounting          |  |  |
|-----------------|---------------------------------|--|--|
| Mounting        | Vertical                        |  |  |
| Orientation     |                                 |  |  |
| Screwing Torque | 0.78 to 1.18 [Nm] * Recommended |  |  |
| Wiring          | M3.5 screw terminal connection  |  |  |
| External        | W51 × H85 × D136.5mm            |  |  |
| Dimensions      | (including the socket)          |  |  |
| Weight          | Main unit: 210g max.            |  |  |
|                 | Socket: 60g max.                |  |  |

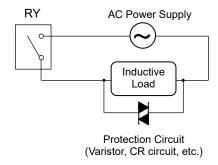
#### MATERIALS

| Housing         | ABS resin (UL 94V-0)            |
|-----------------|---------------------------------|
| Socket          | ABS resin (UL 94V-0)            |
| Screw Terminal  | Galvanized steel with trivalent |
|                 | chromate finish                 |
| Printed Circuit | Glass fabric epoxy resin        |
| Board           | (FR-4: UL 94V-0)                |
| Conformal       | HumiSeal® 1A27NS (Polyurethane) |
| Coating         |                                 |

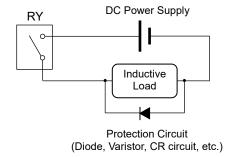

<sup>\*</sup> HumiSeal® is a registered trademark of Chase Corporation.

#### TERMINAL ASSIGNMENT




| 1 | OUTPUT 1 |
|---|----------|
| 2 | OUTPUT 1 |
| 3 | + INPUT  |
| 4 | - INPUT  |
| 5 | OUTPUT 2 |
| 6 | OUTPUT 2 |
| 7 | P (+)    |
| 8 | N (-)    |

### **BLOCK DIAGRAM**




When an inductive load, such as an electric motor, is connected to the output, a relay contact protection circuit must be connected across the load.

## Example of AC Power Connection:



## Example of DC Power Connection:

