
DESCRIPTION

The MS5505D is a plug-in digital alarm setter that compares the levels of DC current or voltage signals with two set-points (upper and lower limits) and outputs two independent isolated relay contact closure signals.

Relay Activation Modes for Output 1&2 -

Mode of operation for each channel can be selected from the following:

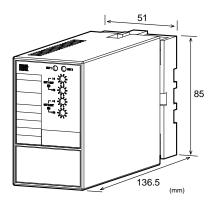
	With Power		Without
	Input < Set Value	Input > Set Value	Power
ОН	OFF	ON	OFF
OL	ON	OFF	OFF
СН	ON	OFF	ON
CL	OFF	ON	ON

Note: The mode of operation cannot be changed by users.

Options -

No code: None

/K: Fast response (0 to 90% response time: 100ms max.) **/X**: Others (Special order)


* For non-standard options, ask MTT for availability.

ORDERING INFORMATION

To place an order, please use the ordering code format as shown above.

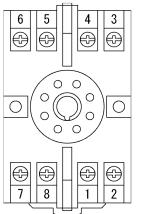
- (e.g.) MS5505D-A-6OHOL
- * The factory default trip point for both channels is 50% or equivalent of input span.

Other Ordering Examples:
For an option code of "X": MS5505D-A-6OHOL/X
(Response time constant: $T = 50$ ms with 90% setting)
For specific trip points*: MS5505D-A-60HOL
Trip point for Output 1: 40%
Trip point for Output 2: 70%
* Specify values in % within the range of 0 to 99% of input
span.
Note: If you wish to include multiple options in your order,
specify the option codes in series (e.g. /KX).

SPECIFICATIONS

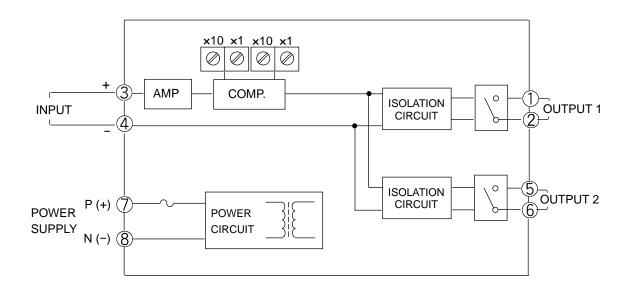
POWER SECTION					
Power	100 to 240V AC: 85 to 264V AC (47				
Requirement	to 63Hz)				
	24V DC: 24V DC±10%				
	100 to 240V DC: 85 to 264V DC				
Power Sensitivity	Better than $\pm 0.1\%$ of span for each				
	power supply range.				
Power Line Fuse 160mA fuse					
Maximum Power Consumption					
Power 1	00-240V AC 24V DC 100-240V DC				
	6.5VA 2.0W 8.4W				
●INPUT SECT	ION				
Input Resistance					
Voltage Input	With power: $1M\Omega$ min.				
(DC)					
(DC)	Without power: $10k\Omega$ min.				
Current Input	4 to 20mA (std.) 250Ω				
(DC)	4 to 201111 (std.) 25032				
Allowable Input Ve	oltage				
Voltage Input Model					
Current Input Model					
	40mA DC max., continuous.				
Output Signal	Two independent relay contact				
	closure signals				
	OH & OL: Form A contacts				
	CH & CL: Form B contacts				
Trip Points					
Setting	Through the front-accessible rotary				
C C	switches.				
Range	0 to 99% of span (in steps of 1%).				
Accuracy	±0.5% of span.				
Hysteresis	1.0%±0.3% of span				
Relay Indicator	OH & OL: The red LED lights up				
	when the relay is ON.				
	CH & CL: The red LED lights up				
	when the relay is OFF.				
Relay Activation	OH & OL: OFF				
without Power	CH & CL: ON				
Relay Start-up	The relay gets ready for action about				
Limitation	2 seconds after power-up.				
	2 seconds after power-up.				

PERFORMANCE

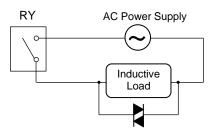

PERFORMANCE			
Temperature	Better than ±0.15% of span per 10°C		
Effect	change in ambient.		
Response Time	150ms max. (0 to 90%) with a step		
	input at 100%.		
Isolation	4-way isolation between input, output		
	1, output 2, and power.		
Insulation	$100M\Omega$ min. (@ 500V DC) between		
Resistance	input, output 1, output 2, and power.		
Dielectric	Input / Output 1 / Output 2 / Power:		
Strength	2000V AC for 1 minute (Cutoff		
-	current: 0.5mA)		
Relay Contacts			
Rated Load	2A 125V AC, 2A 30V DC		
Maximum	250V AC, 30V DC		
Allowable Voltage			
Maximum	2A		
Allowable			
Current			
Electrical Life	2A, 250V AC: 50×10^3 cycles		
	(Frequency: 1,800 cycles/h)		
	2A, 30V DC: 100×10^3 cycles		
	(Frequency: 1,800 cycles/h)		
Mechanical Life	5×10^{6} cycles (Frequency: 18,000		
	cycles/h)		
Surge Withstand	Tested as per ANSI/IEEE		
Capability	C37.90.1-1989.		
Operating	Ambient temperature: -5 to 55°C		
Environment	Humidity: 5 to 90% RH		
	(non-condensing)		
Storage	-10 to 60°C		
Temperature			
PHYSICAL			
Installation	Wall/DIN rail mounting		
Mounting Direction	Vertical		
Screwing Torque	0.78 to 1.18 [Nm] * Recommended		
Wiring	M3.5 screw terminal connection		
External	W51 × H85 × D136.5 mm		
Dimensions	(including the socket)		
Weight	Main unit: 210g max.		
5	Socket: 60g max.		
	0		

MATERIAL

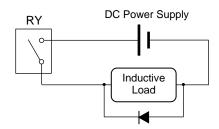
Housing	ABS resin (UL 94V-0)
Socket	ABS resin (UL 94V-0)
Screw Terminal	Galvanized steel with trivalent
	chromate finish
Printed Circuit	Glass fabric, epoxy resin
Board	(FR-4: UL 94V-0)
Conformal	HumiSeal [®] 1A27NSLU
Coating	(Polyurethane)


 \ast HumiSeal $^{\otimes}$ is a registered trademark of Chase Corporation.

TERMINAL ASSIGNMENTS


1	OUTPUT 1	
2	OUTPUT 1	
3	+ INPUT	
4	– INPUT	
5	OUTPUT 2	
6	OUTPUT 2	
\bigcirc	P (+) POWER	
8	N (-)	

BLOCK DIAGRAM


When an inductive load, such as an electric motor, is connected to the output, a relay contact protection circuit must be connected across the load.

Example of AC Power Connection:

Protection Circuit (Varistor, CR circuit, etc.)

Example of DC Power Connection:

Protection Circuit (Diode, Varistor, CR circuit, etc.)