Model: MS5506

DESCRIPTION

The MS5506 is a plug-in strain gauge transmitter that supplies excitation voltage to strain-gauge type pressure sensors, load cells, and the like and converts their output signals into standard process signals. It provides an isolated single output.

ORDERING CODE

MS5506 - 🗆 - 🔲 🔲 Model **Power Supply A**: 100 to 240V AC (50 to 60Hz) **P**: 100 to 240V DC **D**: 24V DC **Excitation Voltage E2**: 5V DC 0: Other DC voltages **E3**: 10V DC Input

1W: ±10mV DC

2W: ±100mV DC

0: Other DC voltage signals

0: Other DC voltage signals

Output -

1: 0 to 10mV DC

2: 0 to 100mV DC

A: 4 to 20mA DC 1: 0 to 10mV DC **D**: 0 to 20mA DC 2: 0 to 100mV DC **Z**: Other DC current signals 3: 0 to 1V DC 4: 0 to 10V DC 5: 0 to 5V DC 6: 1 to 5V DC

Options

No code: None

/K: Fast response (0 to 90% response time: 10ms max.)

/X: Others (Special order)

ORDERING INFORMATION

To place an order, please use the ordering code format as shown above. Also specify a bridge resistance. (e.g.) MS5506-A-E31A (350Ω)

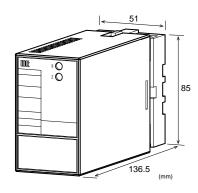
Other Ordering Examples:

For an excitation voltage code of "0": MS5506-A-011

 $(700\Omega / Excitation voltage: 4V)$

For an input code of "0": MS5506-D-E204 (120 Ω / Input: 0

to 20mV)


For an output code of "Z": MS5506-A-E32Z (350 Ω /

Output: 8 to 20mA)

For an option code of "X": MS5506-D-E215/X (Response

frequency: 50Hz)

Note: If you wish to include multiple options in your order, specify the option codes in series (e.g. /KX)

SPECIFICATIONS

-	DOM		\circ	OTI	ONI
	POW	$-\kappa$			

OT OWER DESTROY			
Power	100 to 24	0V AC: 85 to	o 264V AC (47
Requirements	to 63Hz)		
	24V DC:	24V DC±10	%
	100 to 24	0V DC: 85 to	o 264V DC
Power Sensitivi	ty Better tha	n ±0.1% of s	span for each
	power sup	oply range.	
Power Line Fus	e 160mA fu	ise	
Maximum Power Consumption			
Power	100-240V AC	24V DC	100-240V DC
	Approx.	Approx.	Approx.
	7.0VA	2.1W	7.2W

INPUT SECTIO	N
Input Resistance	With power: $1M\Omega$ min.
	Without power: $10k\Omega$ min.
Allowable Input	30V DC max., continuous.
Voltage	
Excitation Voltage	5V DC at 120Ω bridge resistance
	10V DC at 350 Ω bridge resistance
	Other voltages
Range Available	
Input Range (DC)	-200mV to 200mV
Input Span (DC)	5mV* to 400mV
Input Bias	-100 to 100%
Excitation Voltage	3 to 10V

Note: For any input range including negative input signals, the input span ranges from *10mV to 400mV.

Input Spec. Ex. 1: For 50 to 150mV input, the input span is 100 mV and the bias +50%.

Input Spec. Ex. 2: For -10 to 30mV input, the input span is 40mV and the bias -25%.

OUTPUT SECT	ION	
Allowable Output Lo	ad	
Voltage Output (DC)	1V span and up	2mA max.
	10mV	10 k Ω min.
	100mV	100 k Ω min.
Current Output (DC)	4 to 20mA	750Ω max.
Zero Adjustment	Approx. ±5% of sp	an.
	(Adjustable by the	front-accessible
	trimmer.)	
Span Adjustment	Approx. ±5% of sp	an.
	(Adjustable by the	front-accessible
	trimmer.)	

^{*} For non-standard options, ask MTT for availability.

Ranges Available		
	Current Signal	Voltage Signal
Output Range (DC)	0 to 20mA	-10 to 10V
Output Span (DC)	4 to 20mA	10mV to 20V
Output Bias	0 to 100%	-100 to 100%

* For current output signals, the accuracy of any current output smaller than 0.1mA is not guaranteed.

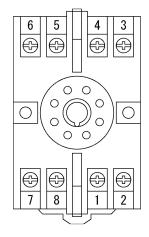
Output Spec. Ex. 1: For 4 to 20mA output, the output span is 16mA and the bias +25%.

Output Spec. Ex. 2: For -1 to 4V output, the output span is 5V and the bias -20%.

PERFORMANCE

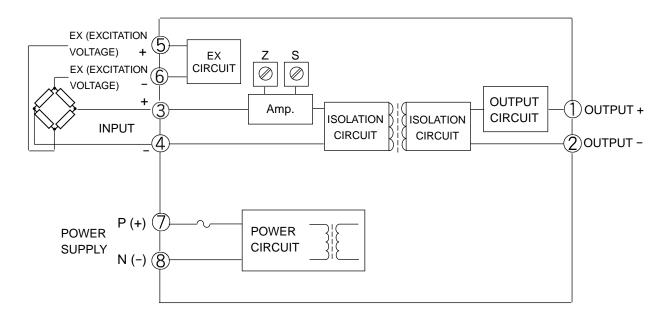
Accuracy Rating	Better than ±0.1% of span (at	
	25°C±5°C).	
Temperature	Better than ±0.2% of span per 10°C	
Effect	change in ambient.	
Response Time	85ms max. (0 to 90%) with a step	
	input at 100%.	
CMRR	100dB min. (500V AC, 50/60Hz)	
Isolation	3-way isolation between input,	
	output, and power.	
Insulation	100MΩ min. (@ 500V DC) between	
Resistance	input, output, and power.	
Dielectric Strength	Input / Output / Power: 2000V AC	
	for 1 minute (Cutoff current: 0.5mA)	
Surge Withstand	Tested as per ANSI/IEEE	
Capability	C37.90.1-1989.	
Operating	Ambient temperature: -5 to 55°C	
Environment	Humidity: 5 to 90% RH	
	(non-condensing)	
Storage	-10 to 60°C	
Temperature		

PHYSICAL


91111010/1L	
Installation	Wall/DIN rail mounting
Mounting Direction	Vertical
Screwing Torque	0.78 to 1.18 [Nm] * Recommended
Wiring	M3.5 screw terminal connection
External	W51 × H85 × D136.5 mm
Dimensions	(including the socket)
Weight	Main unit: 200g max.
	Socket: 60g max.

MATERIAL

Housing	ABS resin (UL 94V-0)
Socket	ABS resin (UL 94V-0)
Screw Terminal	Galvanized steel with trivalent
	chromate finish
Printed Circuit	Glass fabric, epoxy resin
Board	(FR-4: UL 94V-0)
Conformal	HumiSeal® 1A27NSLU
Coating	(Polyurethane)


HumiSeal® is a registered trademark of Chase Corporation.

TERMINAL ASSIGNMENTS

1	+ OUTPUT
2	- OUTPUT
3	+ INPUT
4	- INPUT
5	+ EX (Excitation voltage)
6	– EX (Excitation voltage)
7	P (+)
8	N (-)

BLOCK DIAGRAM

