Product Specification Sheet Model: MS3725 MS3700 Slim Plug-In High/Low Signal Selector with Isolated Single/Dual Output #### **DESCRIPTION** The MS3725 is a slim, plug-in high/low signal selector that selects the higher or lower of two input signals, converts it into a standard process signal, and provides isolated single or dual output. (The input ranges of the two signals should be the same.) #### ORDERING CODE # Output 2 — No code: None ### The codes are the same as for Output 1. Note 1: When a voltage output is selected for Output 1, a current output cannot be selected for Output 2. Note 2: When the code A (4 to 20mA) is selected for both of the two outputs, the output load will be 550Ω maximum for Output 1 and 350Ω maximum for Output 2. #### Options No code: None **/K**: Fast response (0 to 90% response time: 10ms max.) **/L**: Dual current output with high output load * Not subject to CE approval. (OUT-1: 750Ω / OUT-2: 550Ω) **/X**: Others (Special order) * For non-standard options, ask MTT for availability. #### ORDERING INFORMATION To place an order, please use the ordering code format as shown on the left. (e.g.) MS3725-A-6A6 Other Ordering Examples: For an input code of "0": MS3725H-A-0A6 (Input: 2 to 100 For an output code of "0": MS3725H-A-6A0 (Output: 2 to 5V) For an option code of "X": MS3725H-A-6A6/X (Response frequency: 50Hz) Note: If you wish to include multiple options in your order, specify the option codes in series (e.g. /KX). ### **SPECIFICATIONS** #### **POWER SECTION** | Power | 100 to 240 | 100 to 240V AC: 85 to 264V AC (47 | | |-------------------|---------------|-------------------------------------|-------------| | Requirements | to 63Hz) | to 63Hz) | | | | 24V DC: | 24V DC±10% | ó | | | 100 to 240 | OV DC: 85 to | 264V DC | | Power Sensitivi | ty Better tha | Better than ±0.1% of span for each | | | | power sup | ply range. | | | Power Line Fus | se 160mA fu | 160mA fuse is installed (standard). | | | Power Consumption | | | | | Power | 100-240V AC | 24V DC | 100-240V DC | | Single Output | 4.5VA max | 1.4W max | 4.8W max | | Dual Output | 5.5VA max | 1.7W max | 6.0W max | #### **OINPUT SECTION** | • · · · · · · · · · · · · · · · · · · · | | | |---|---|-------------| | Input Resistance | | | | Voltage Input (DC) | With or without power : $1M\Omega$ min. | | | Current Input (DC) | 4 to 20mA (std.) | 250Ω | | | 2 to 10mA | 250Ω | | | 1 to 5 mA | 100Ω | | | 0 to 20mA | 250Ω | | | 10 to 50mA | 10Ω | | Allowable Input Val | togo | | Allowable Input Voltage Voltage Input Model 30V DC max., continuous. (Standard for a span up to 10V) Current Input Model 40mA DC max., continuous. (Standard for 4 to 20mA) | Ranges Available | | | |--|----------------|----------------| | | Current Signal | Voltage Signal | | Input Range (DC) | 0 to 100mA | 0 to 10V | | Input Span (DC) | 100μA to 100mA | 200mV to 10V | | Input Bias | 0 to 100% | 0 to 100% | | Input Spec. Ex.1: For 4 to 20V input, the input span is | | | | 16mA and the bias $+25$ %. | | | | Input Spec. Ex. 2: For 2 to 6V input, the input span is 4V | | | | 1.1 1: | | | | 16mA and the bias $+25$ %. | | | | |---|--------------------------------------|-----------------------|--| | Input Spec. Ex. 2: For 2 to 6V input, the input span is 4V | | | | | and the bias $+50\%$. | | | | | | | | | | OUTPUT SEC | TION | | | | Maximum Output L | .oad | | | | Voltage Output | 1V span and up | 2mA max. | | | (DC) | 10mV | $10k\Omega$ min. | | | | 100mV | 100 k Ω min. | | | Current Output | 4-20mA single output | 750Ω max. | | | (DC) | 4-20mA dual output | Output 1: | | | | • | 550Ω max. | | | | | Output 2: | | | | | 350Ω max. | | | Zero Adjustment | Zero Adjustment Approx. ±5% of span. | | | | (Adjustable by the front-accessible | | | | | | trimmer.) | | | | Span Adjustment | Approx. ±5% of span. | | | | | (Adjustable by the front-accessible | | | | | trimmer.) | | | | Ranges Available | | | | | - | Current Signal | Voltage Signal | | | Output Range (DC) | 0 to 20mA | -10 to 10V | | | Output Span (DC) | 4 to 20mA | 10mV to 20V | | | Output Bias | 0 to 100% | -100 to 100% | | | * For current output signals, the accuracy of any current | | | | | output smaller than 0.1mA is not guaranteed. | | | | | Output Spec. Ex.1: For 4 to 20mA output, the output span is | | | | | 16mA and the bias $+25$ %. | | | | | Output Spec Ex 2: For -1 to AV output the output span is | | | | | Output Spec. Ex.1. For 4 to 2011A output, the output spair is | |--| | 16mA and the bias $+25$ %. | | Output Conserved to the AV automatical contract conserved to the contract contract conserved to the contract contrac | Output Spec. Ex. 2: For -1 to 4V output, the output span is 5V and the bias -20%. ### PERFORMANCE | FERI ORMANCE | | | |-----------------|--|--| | Accuracy Rating | Better than $\pm 0.1\%$ of span (at $25^{\circ}\text{C}\pm 5^{\circ}\text{C}$). | | | Temperature | Better than $\pm 0.2\%$ of span per 10° C | | | Effect | change in ambient. | | | Selection | Better than 0.5% of span. | | | Sensitivity | • | | | Response Time | 85ms max. (0 to 90%) with a step | | | | input at 100%. | | | CMRR | 100dB min. (500V AC, 50/60Hz) | | | Isolation | 4-way isolation between input, output | | | | [Output 1/Output 2], power, and | | | | ground. | | | Insulation | $100M\Omega$ min. (@ 500V DC) between | | | Resistance | input, output [Output 1/Output 2], | | | | power, and ground. | | | Dielectric | Input / Output [Output 1/Output 2] / | | | Strength | [Power, Ground]: 2000V AC for 1 | | | | minute (Cutoff current: 0.5mA) | | | | Power / Ground: 2000V AC for 1 | | | | minute (Cutoff current: 5mA) | | | | Output 1 / Output 2: 500V AC for 1 | | | | minute (Cutoff current: 0.5mA) | | | Surge Withstand | Tested as per ANSI/IEEE | | | Capability | C37.90.1-1989. | | | Operating | Ambient temperature: -5 to 55°C | |-------------------|--------------------------------------| | Environment | Humidity: 5 to 90% RH | | | (non-condensing) | | Storage | -10 to 60°C | | Temperature | | | ●PHYSICAL | | | Installation | Wall/DIN rail mounting | | Wiring | M3.5 screw terminal connection | | wiiiig | (with a power terminal block cover & | | | drop-out prevention screws) | | Screwing Torque | 0.8 to 1.0 [Nm] * Recommended | | External | W29 × H86 × D125mm | | Dimensions | (including the mounting screw and | | Difficitions | socket) | | Weight | Main unit: 120g max. | | Wolgin | Socket: 80g max. | | | Booket. oog man. | | •MATERIALS | | | Housing | ABS resin (UL 94V-0) | | Terminal Block | PBT resin (UL 94V-0) | | Terminal Block | PC resin (UL 94V-2) | | Cover | | | DIN Rail Stopper | PP resin (UL 94HB) | | Screw Terminal | Nickel-plated steel | | Contacts Material | Brass with 0.2µm gold plating | | and Finish | | | Printed Circuit | Glass fabric epoxy resin | | Board | (FR-4: UL 94V-0) | | Anti-Humidity | HumiSeal® 1A27NS (Polyurethane) | | Coating | , | | | | ^{*} HumiSeal $^{\tiny{\circledR}}$ is a registered trademark of Chase Corporation. ## **OSTANDARDS CONFORMITY** | CE Directive | EMC Directive (2014/30/EU) | |--------------|------------------------------------| | Conformity | EN61326-1: 2013 | | | Low Voltage Directive (2014/35/EU) | | | IEC61010-1/EN61010-1: 2010 | | | Installation Category II | | | Pollution Degree 2 | | | Maximum operating voltage 300V | | | Reinforced insulation between | | | [input/output/GND] and power. | ## TERMINAL ASSIGNMENT | 1 | P (+) | POWER | | |-----|------------|-------|--| | 2 | N (-) | POWER | | | 4 | GND | | | | 4 | + OUT | PUT 1 | | | (5) | - OUTPUT 1 | | | | 6 | - INPUT 2 | | | | 7 | + OUTPUT 2 | | | | 8 | - OUTPUT 2 | | | | 9 | + INPUT 1 | | | | 10 | - INPUT 1 | | | | 11 | + INPl | JT 2 | | ## **BLOCK DIAGRAM**