Slim Plug-In Loop-Powered Isolator (2-Channel Model)

DESCRIPTION

The MS3764 is a slim, plug-in dual-channel loop-powered isolator that takes the power from its input current loop.

ORDERING CODE

MS3764 -
Model

Input (Channel 1 / Channel 2)
4 to 20mA DC / 4 to 20mA DC

Output (Channel 1 / Channel 2)

A: 4 to 20mA DC / 4 to 20mA DC **V**: 1 to 5V DC / 1 to 5V DC

ORDERING INFORMATION

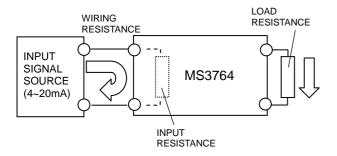
To place an order, please use the ordering code format as shown above.

(e.g.) MS3764-V

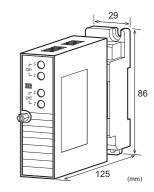
INPUT RESISTANCE CALCULATION

The input resistance for the current output model is calculated by the following equation:

Input resistance = Approx. 230Ω + Load resistance (for


20mA DC input)

Maximum output load: 350Ω


(Allowable load resistance: 50 to 350Ω)

(Example) Input resistance with a load resistance of 250Ω Input resistance = Approx. $230\Omega + 250\Omega = \text{Approx}$. 480Ω (for 20mA DC input)

The allowable load resistance of an input signal source must be not less than the resistance calculated above, added with the wiring resistance.

Note: The input resistance for the voltage output model is fixed to approx. 250Ω (for 20mA DC input).

Model: MS3764

SPECIFICATIONS

OINPUT SECTION

Input Signal	4 to 20mA DC
Input Resistance	
Voltage Output Model	Approx. 250Ω (for 20mA DC input)
Current Output Model	Approx. $230\Omega + \text{Load resistance}$
	(for 20mA DC input)
Allowable Input	30mA DC max.
Current	

OUTPUT SECTION

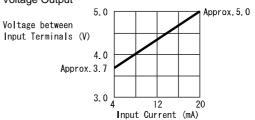
Allowable Output Load

 $\begin{array}{ccc} \mbox{Voltage Output (DC)} & 50 \mbox{k}\Omega \mbox{ min.} \\ \mbox{Current Output (DC)} & 4 \mbox{ to } 20 \mbox{mA} & 350 \mbox{\Omega} \mbox{ max.} \\ \mbox{(Allowable load resistance: } 50 \mbox{ to } 350 \mbox{\Omega} \end{array}$

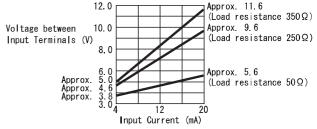
Zero Adjustment

Voltage Output Model Approx. $\pm 2.5\%$ of span. Current Output Model Approx. $\pm 0.5\%$ of span.

(Adjustable by the front-accessible trimmer.)


trımn

Span Adjustment


Voltage Output Model Approx. $\pm 2.5\%$ of span. Current Output Model Approx. $\pm 1.5\%$ of span.

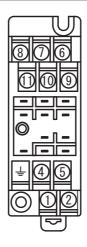
(Adjustable by the front-accessible trimmer.)

Voltage Output

Current Output

■ PERFORMANCE

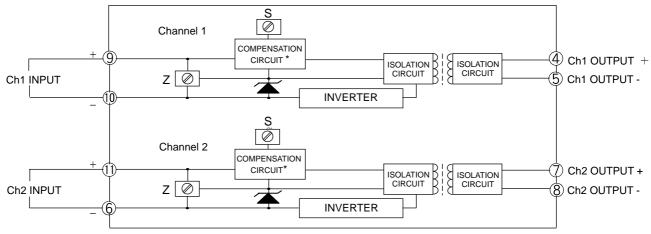
PERFORMANC	E
Accuracy Rating	Better than $\pm 0.15\%$ of span.
Temperature Effect	Better than ±0.2% of span per 10°C
•	change in ambient.
Response Time	15ms max. (0 to 90%) with a step
•	input at 100%.
Output Variation	$0.01\%/\Omega$ (50 to 150 Ω)
due to Load	$0.005\%/\Omega$ (150 to 350 Ω)
Change	* Adjusted at 250Ω for shipment.
CMRR	100dB min. (500V AC, 50/60Hz)
Isolation	Isolation between input and output,
	and channels.
Insulation	100MΩ min. (@ 500V DC) between
Resistance	input and output, and channels.
Dielectric Strength	Input / Output: 1500V AC for 1
J.	minute (Cutoff current: 0.5mA)
	Channel to Channel: 1500V AC for
	1 minute (Cutoff current: 0.5mA)
Surge Withstand	Tested as per ANSI/IEEE
Capability	C37.90.1-1989.
Operating	Ambient temperature: -5 to 55°C
Environment	Humidity: 5 to 90% RH
	(non-condensing)
Storage	-10 to 60°C
Temperature	
•	
PHYSICAL	
Installation	Wall/DIN rail mounting
Wiring	M3.5 screw terminal connection
	(with a power terminal block cover
	& drop-out prevention screws)
Screwing Torque	0.8 to 1.0 [Nm] * Recommended
External	W29 × H86 × D125mm
Dimensions	(including the mounting screw and
	socket)


Main unit: 100g max. Socket: 80g max.

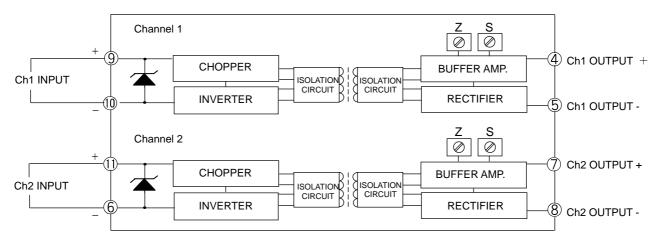
MATERIALS

Housing	ABS resin (UL 94V-0)
Terminal Block	PBT resin (UL 94V-0)
Terminal Block	PC resin (UL 94V-2)
Cover	
DIN Rail Stopper	PP resin (UL 94HB)
Screw Terminal	Nickel-plated steel
Contacts Material	Brass with 0.2µm gold plating
and Finish	
Printed Circuit	Glass fabric epoxy resin
Board	(FR-4: UL 94V-0)
Anti-Humidity	HumiSeal® 1A27NS (Polyurethane)
Coating	

^{*} HumiSeal® is a registered trademark of Chase Corporation.


TERMINAL ASSIGNMENT

1	N.C.
2	N.C.
<u></u>	N.C.
4	+ OUTPUT Ch 1
5	- OUTPUT Ch 1
6	- INPUT Ch 2
7	+ OUTPUT Ch 2
8	- OUTPUT Ch 2
9	+ INPUT Ch 1
10	- INPUT Ch 1
11	+ INPUT Ch 2


Current Input / Current Output Model:

Weight

* CIRCUIT FOR COMPENSATING FOR OUTPUT VARIATION DUE TO LOAD CHANGE

Current Input / Voltage Output Model:

